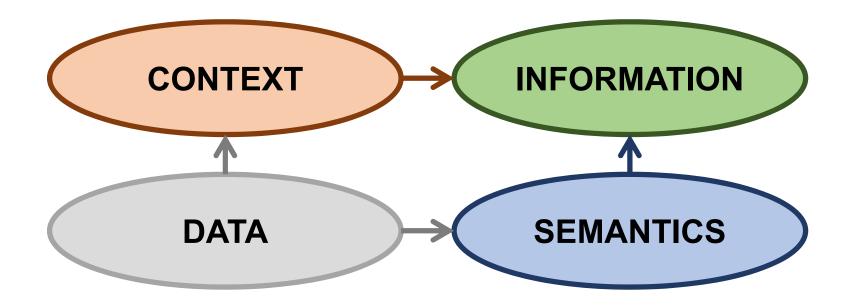
Datenreduktion vor Herausgabe von Informationen -- der Werkzeugkasten der Kryptographen

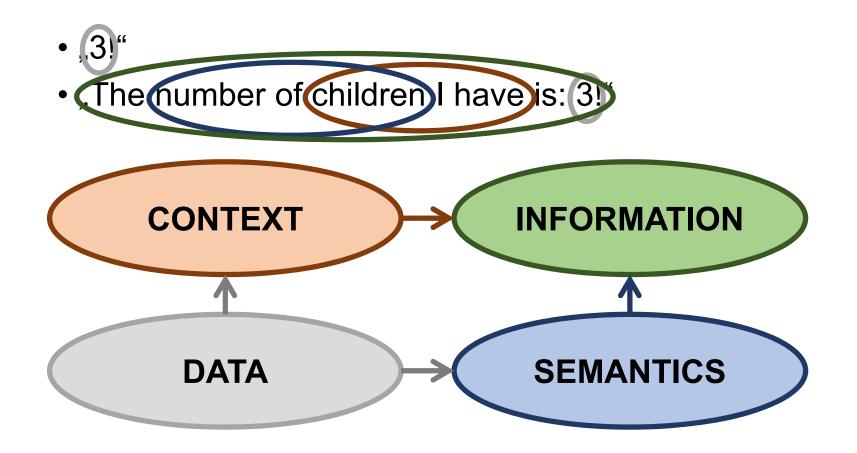
KARLSTAD UNIVERSITY SWEDEN

29.06.2022

Prof. Dr.-Ing. Meiko Jensen

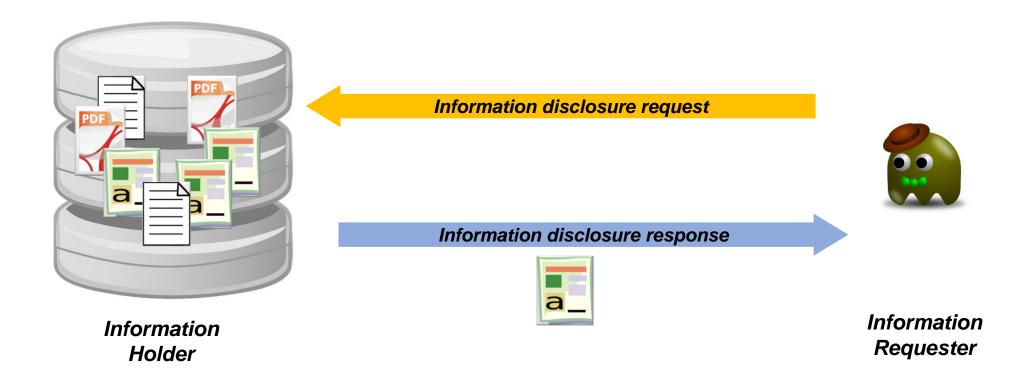

Agenda

- Data vs. Information
- Issues with information disclosure
- Techniques for information reduction
 - Pseudonymization
 - K-Anonymity
 - Differential Privacy
- Techniques for information documentation
 - Digital Signatures
 - Advanced Digital Signatures
- Summary


Data vs. Information

• "The number of children I have is: 3!"

Data vs. Information


Data vs. Information

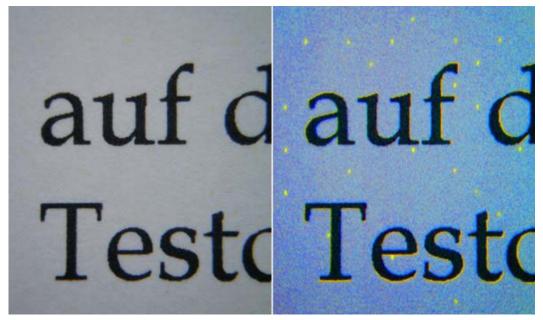
Meiko.Jensen@kau.se mje@kau.se student36456@kau.se info@kau.se 382599341@kau.se meiko@jensen.name q853092@nwytg.net

The information disclosure scenario

Information Disclosure Scenario

What could go wrong?

AOL publishes "anonymized" search engine requests of 3 months of 2006


116874 thompson water seal 2006-05-24 11:31:36 http://www.thompsonswaterseal.com 1. 116874 express-scripts.com 2006-05-30 07:56:03 1 http://www.express-scripts.com 116874 express-scripts.com 2006-05-30 07:56:03 2 https://member.express-scripts.com/ 116874 knbt 2006-05-31 07:57:28 116874 knbt.com 2006-05-31 08:09:30 http://www.knbt.com 117020 naughty thoughts 2006-03-01 08:33:07 2 http://www.naughtythoughts.com 117020 really eighteen 2006-03-01 15:49:55 2 http://www.reallyeighteen.com 2006-03-03 17:57:38 1 http://www.capitol.state.tx.us 117020 texas penal code 117020 hooks texas 2006-03-08 09:47:08 117020 homicide in hooks texas 2006-03-08 09:47:35 117020 homicide in bowie county 2006-03-08 09:48:25 http://www.tdci.state.tx.us 117020 texarkana gazette 2006-03-08 09:50:20 http://www.texarkanagazette.com 1 117020 tdcj 2006-03-08 09:52:36 http://www.tdci.state.tx.us 117020 naughty thoughts 2006-03-11 00:04:40 http://www.naughtythoughts.com 117020 cupid.com 2006-03-11 00:08:50

AOL publishes "anonymized" search engine requests of 3 months of 2006

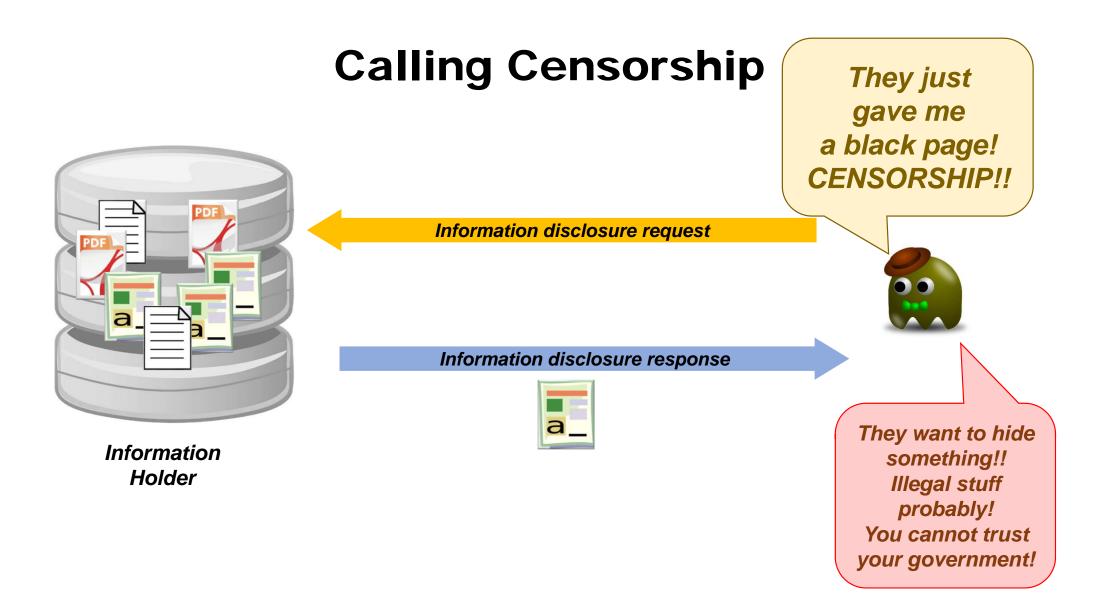
Machine Identification Codes

"A Machine Identification Code (MIC) [..] is a digital watermark which certain color laser printers and copiers leave on every printed page, allowing identification of the device which was used to print a document."

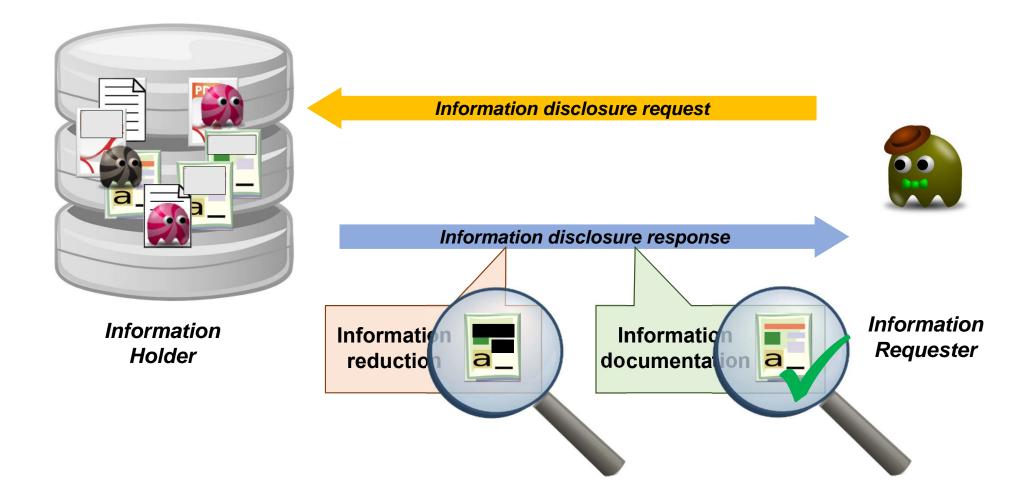
Source: Wikipedia / Florian Heise

Machine Identification Codes

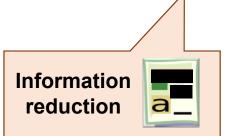
- Has led to identification and arrest of whistleblower Reality Leigh Winner
- Leaked NSA documents on russian interference with US elections in 2016
- Leaked documents were scanned and published
- Yellow dots found in the scans by the FBI
- Her printer was identified \rightarrow she was identified

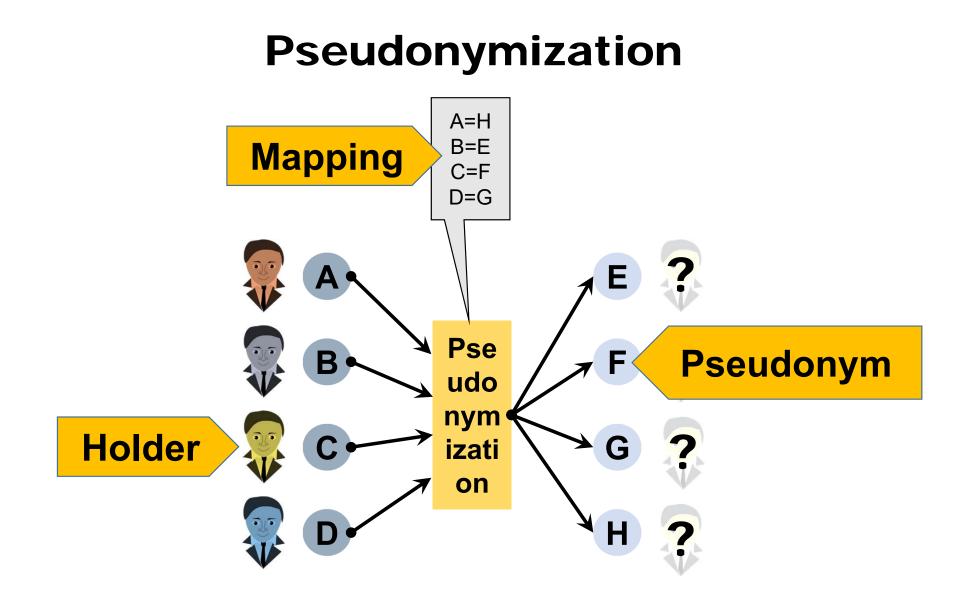


Source: Wikipedia


University troubles

- Students demanding access to exam documents before exams are written
- ... or to the standard solutions documents
- ... or to the grades database files
- ... or to the emails of the professor (that may contain the exams)
- Swedish principle of public access to official documents:
 - Every human may demand all documents created by Swedish government officials
 - ...such as university employees
 - ... free of charge, without restriction or fee
 - ...unless explicit secrecy is declared
 - ...for arbitrary purposes (no "misuse" concept in the law)
- → Employees prefer phone/zoom to email ("chilling effect")




Information Disclosure Scenario

Technique #1: Pseudonymization

Example

Name	Study Program	Grade
Aron First	MIE	1.0
Betty Second	MIE	3.3
Carl Third	MIE	2.7
Denise Fourth	INI	2.0
Eddy Fifth	INI	5.0
Fae Sixth	INI	5.0
Gerald Seventh	INI	1.7
Hannah Eigth	BDS	1.3
lgor Ninth	BDS	4.0

Example

	Matriculation Number	Study Program	Grade
	9200189	MIE	1.0
	9200198	MIE	3.3
	9200127	MIE	2.7
Pseudonym	9200117	INI	2.0
	9200226	INI	5.0
	9200228	INI	5.0
	9200298	INI	1.7
	9200201	BDS	1.3
	9200204	BDS	4.0

Pseudonym Creation

Self-chosen Pseudonym

Arbitrary sequence of characters chosen by yourself ("nickname")

- "Mike-O"
- "FinseRulez2022"

Self-created Pseudonym

Still created by yourself, but follows a fixed data format / creation algorithm

- Random number picked yourself
- Public key of keypair used in Blockchains

Centrally Assigned Pseudonym

Assigned to you by a central pseudonym creation authority

- Customer-ID
- Taxation-ID
- Student Matriculation Number

Pseudonymization Techniques

Increasing Counter Number Assignment

Assign numbers from a counter that is increased with every new pseudonym issued

- E.g. customer ID's, session ID's
- Automatically assigns different pseudonyms to different identities
- Same identities might get mapped to different pseudonyms!

Random Number / Pseudonym Assignment

Choose a (truly random) number / pseudonym per identity

- Make sure different identities are mapped to different numbers / pseudonyms
- Make sure same identities are mapped to same numbers / pseudonyms

Hashing

Map identity to hash value of identity

- pseudonym = hash(identity)
- Automatically assigns same pseudonyms to same identities
- Different identities might get mapped to same pseudonyms (hash collision)!

...all of these have their issues!

Attacks on Pseudonymization

Matriculation Number	Study Program	Grade
9200189	MIE	1.0
9200198	MIE	3.3
9200127	MIE	2.7
9200117	INI	2.0

Learn identity from non-identifiers! (so-called Quasi-Identifiers)

Attacks on Pseudonymization

Matriculation Number	Study Program	Grade
9200189	MIE	1.0
9200198	MIE	1.0
9200127	MIE	5.0

Learn identity from background knowledge!

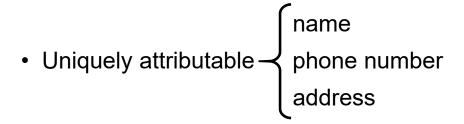
Attacks on Pseudonymization

Matriculation Number	Study Program	Grade
9189726	MIE	1.0
9200198	MIE	3.3
9200127	MIE	2.7
9200117	INI	2.0
9200226	INI	5.0
9200228	INI	5.0
9200298	INI	1.7
9200201	BDS	1.3
9200204	BDS	4.0


Learn identity from background knowledge!

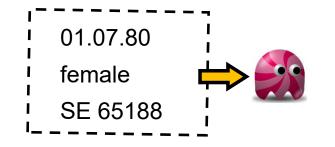
ENISA Reports 2019-2021

- Terminology
- Scenarios
- Adversary Model
- Techniques
- Anonymity vs. Utility
- Application Scenarios
 - IP Address Pseudonymization
 - E-Mail Address Pseudonymization
 - Pseudonymization in Practice
- Use Case: Medical Data Analytics
- Data Custodian Models

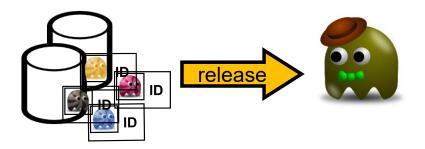


Technique #2: k-anonymity

Types of Identifiers


Explicit Identifiers

Quasi-Identifiers


In combination, can uniquely identify
 birth date
 gender
 ZIP code

k-anonymity

Goal: to prevent re-identification of individuals when releasing data

• k-anonymity property:

on data release, information about a subject cannot be distinguished from at least k-1 other individuals

Example: building a k=2 release

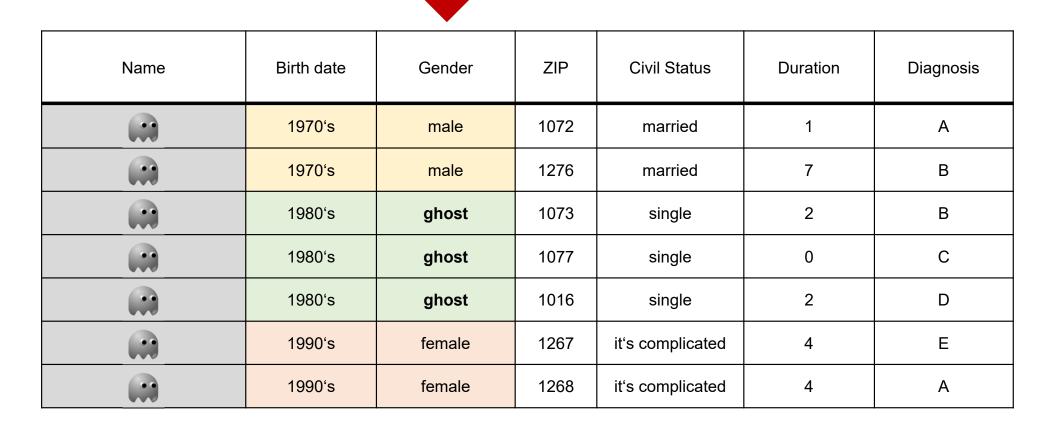
Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	11.03.79	male	1072	married	1	А
	17.03.79	male	1276	married	7	В
	01.07.80	female	1073	single	2	В
	07.09.84	female	1077	single	0	С
	02.07.89	male	1016	single	2	D
	21.09.91	female	1267	it's complicated	4	E
	24.12.98	female	1268	it's complicated	4	А

Example: building a k=2 release

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	11.03.79	male	1072	married	1	A
	17.03.79	male	1276	married	7	В
	01.07.80	female	1073	single	2	В
	07.09.84	female	1077	single	0	С
	02.07.89	male	1016	single	2	D
	21.09.91	female	1267	it's complicated	4	E
	24.12.98	female	1268	it's complicated	4	А
Explicit Identifier	Quasi-Identifiers				Releas	sed data

Remove Name Field

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	11.03.79	male	1072	married	1	А
	17.03.79	male	1276	married	7	В
	01.07.80	female	1073	single	2	В
	07.09.84	female	1077	single	0	С
	02.07.89	male	1016	single	2	D
	21.09.91	female	1267	it's complicated	4	E
	24.12.98	female	1268	it's complicated	4	А


Generalize Birth date to Range

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1072	married	1	А
	1970's	male	1276	married	7	В
	1980's	female	1073	single	2	В
	1980's	female	1077	single	0	С
	1980's	male	1016	single	2	D
	1990's	female	1267	it's complicated	4	E
	1990's	female	1268	it's complicated	4	А

The Gender Field

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1072	married	1	А
	1970's	male	1276	married	7	В
	1980's	female	1073	single	2	В
	1980's	female	1077	single	0	С
	1980's	male	1016	single	2	D
	1990's	female	1267	it's complicated	4	E
	1990's	female	1268	it's complicated	4	А

Generalize Gender Field

OR Suppress Information

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1072	married	1	А
	1970's	male	1276	married	7	В
	1980's	female	1073	single	2	В
	1980's	female	1077	single	0	С
*	*	*	*	*	*	*
	1990's	female	1267	it's complicated	4	E
	1990's	female	1268	it's complicated	4	А

Generalize ZIP data

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1***	married	1	A
	1970's	male	1***	married	7	В
	1980's	ghost	10**	single	2	В
	1980's	ghost	10**	single	0	С
	1980's	ghost	10**	single	2	D
	1990's	female	12**	it's complicated	4	E
	1990's	female	12**	it's complicated	4	А

Civil Status Field is k=2!

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1***	married	1	А
	1970's	male	1***	married	7	В
	1980's	ghost	10**	single	2	В
	1980's	ghost	10**	single	0	С
	1980's	ghost	10**	single	2	D
	1990's	female	12**	it's complicated	4	E
	1990's	female	12**	it's complicated	4	A

Homogeneity Attack on k-anonymity

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1***	married	1	А
	1970's	male	1***	married	7	А
	1980's	ghost	10**	single	2	В
	1980's	ghost	10**	single	0	С
	1980's	ghost	10**	single	2	D
	1990's	female	12**	it's complicated	4	E
	1990's	female	12**	it's complicated	4	А

Homogeneity Attack on k-anonymity

Name	Birth date	Gender	ZIP	Civil Status	Duration	Diagnosis
	1970's	male	1***	married	1	A
	1970's	male	1***	married	7	A
	1980's	ghost	10**	single	2	
	1980's	ghost	10**	single	0	С
						D
	E					
is from the 1970's → 🏠 has Diagnosis A!						A

I-diversity and t-closeness

I-diversity

- Addresses two attacks on k-anonymity
 - Homogeneity attack
 - Background knowledge attack

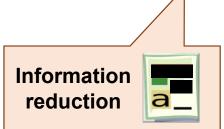
t-closeness

- Addresses I-diversity limitations
- Metric is the attacker's information gain

BUT

Small L, not large i

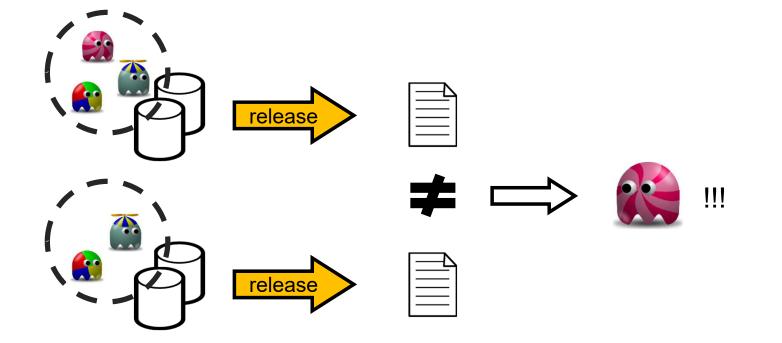
BUT


- Difficult, sometimes unnecessary
- Insufficient to prevent attribute disclosure
- it does not consider overall data distribution
- it does not consider semantics

- No computational procedure
- Limitations on the utility of data releases

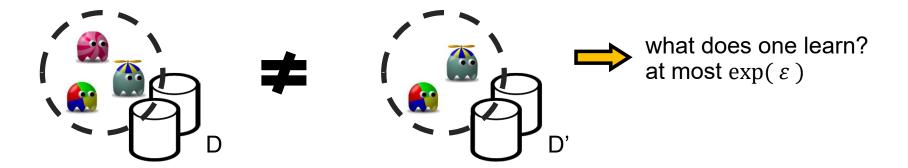
If you want to know more

- Sweeney, L.: k-Anonymity: a Model for Protecting Privacy. Int. J. Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
- Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: I-diversity: Privacy beyond k-anonymity. In: Int Conf Data Engineering, ICDE 2006.
- Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and ldiversity. In: Int Conf Data Engineering, ICDE 2007.

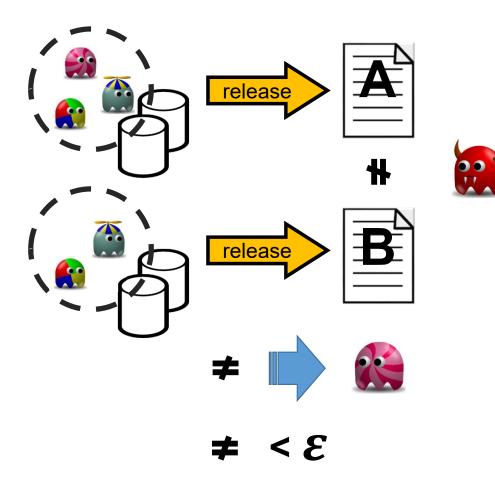


Technique #3: Differential Privacy

Releasing Personal Data


• Looking into two data releases:

(from a statistical database


Differential Privacy

• Quantify the difference in what might be learned about any individual (() from a database with or without said individual

- Bound the risk to a factor of ε
 - See
 - •
- a factor of ε e Cynthia Dwork: Differential Privacy. In: 33rd International Colloquium on Automata, Languages and Programming, part II (ICALP 2006). Springer, Juli 2006 Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam Smith: *Calibrating Noise to Sensitivity in Private Data Analysis*. In: Shai Halevi, Tal Rabin (Hrsg.): *Theory of Cryptography*. Springer, 2006, ISBN 978-3-540-32731-8, Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam Smith: Calibrating Noise to Sensitivity in Private Data Analysis.

Differential Privacy

• Meaning:

an attacker () is not able to learn any additional information that she could not learn if the participant had opted out.

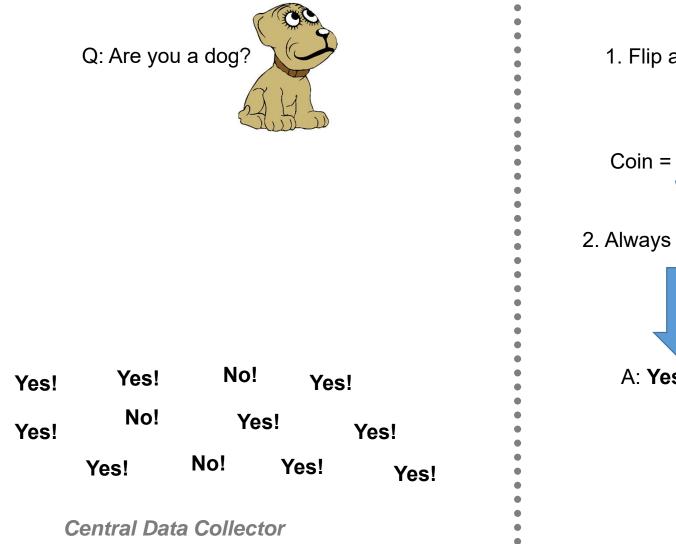
How to do it?

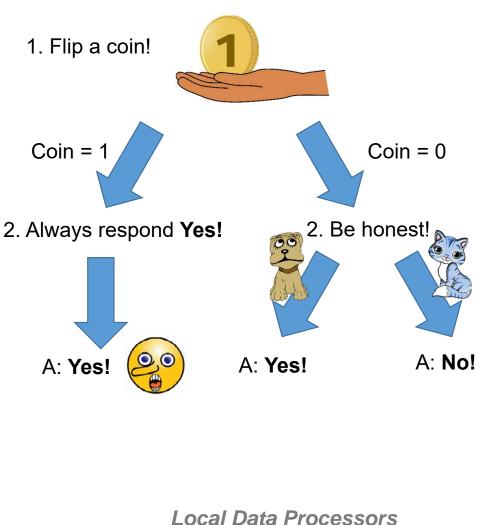
• Add noise to the query result

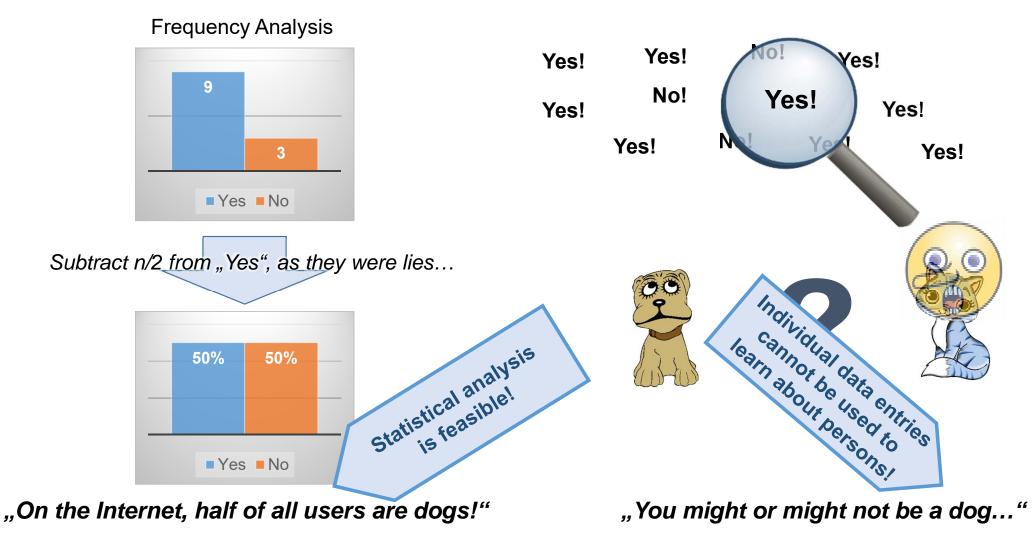
how? it depends on...

- the mechanism design
- and the type of data.
 exponential mechanism categorical data
 Laplace mechanism numerical data

Limitations


Differential Privacy does not mean that is learns nothing about is from the results


mind the background information!



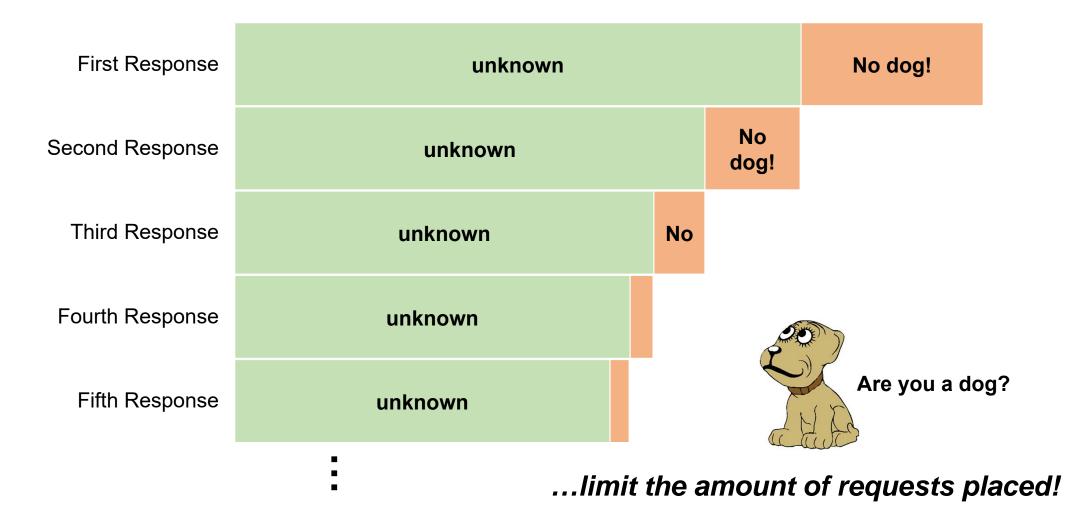
"On the Internet, nobody knows you're a dog."

• In general:

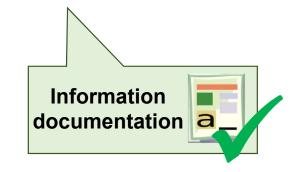
- Add random noise to the statistical dataset
 - at the individual data sensors
 - Prior to sending the data to the collector
- Aggregated dataset then does not contain the noise-free individual data
- ε -differential privacy, with $\varepsilon = \ln(0.75 / (1 0.75))$
- Can be extended to other types of queries (e.g. scaled queries like "give a 5-star rating")

RAPPOR

- RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response by Úlfar Erlingsson, Vasyl Pihur, Aleksandra Korolova (Google, USC)
- Built into Google Chrome browser
 - Detection of malicious websites
 - Problem:
 - Community wants to learn which websites are hosting Malware
 - Individual does not want to reveal which websites it has visited


Details:

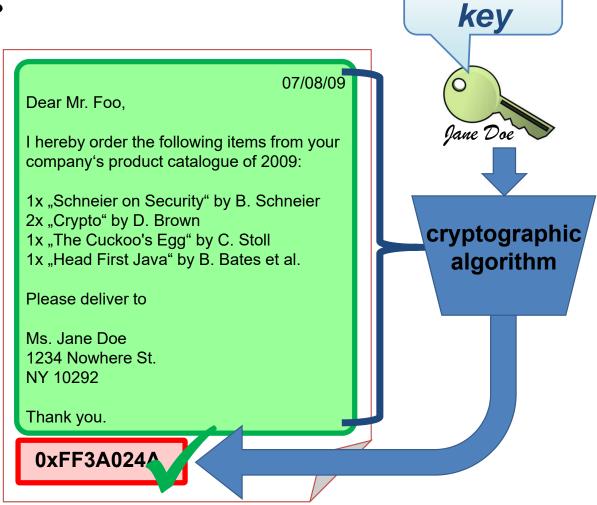
https://security.googleblog.com/2014/10/learning-statistics-with-privacy-aided.html

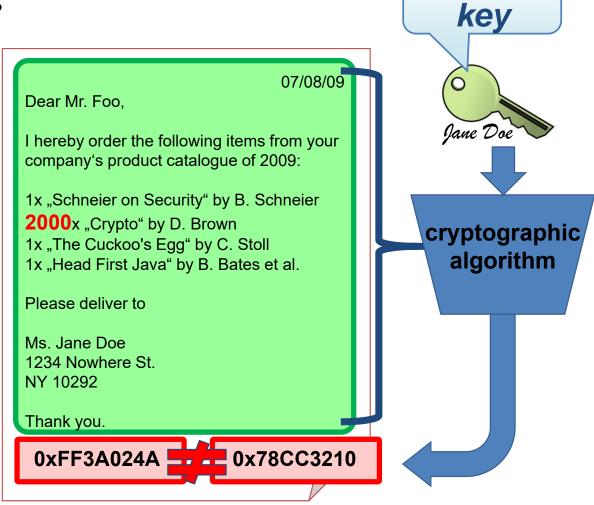

https://github.com/google/rappor

• Problem:

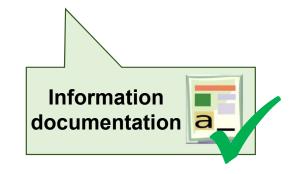
• If you repeat asking the same question to the same person, you learn the correct answer with increasing probability...






Technique #4: Digital Signatures

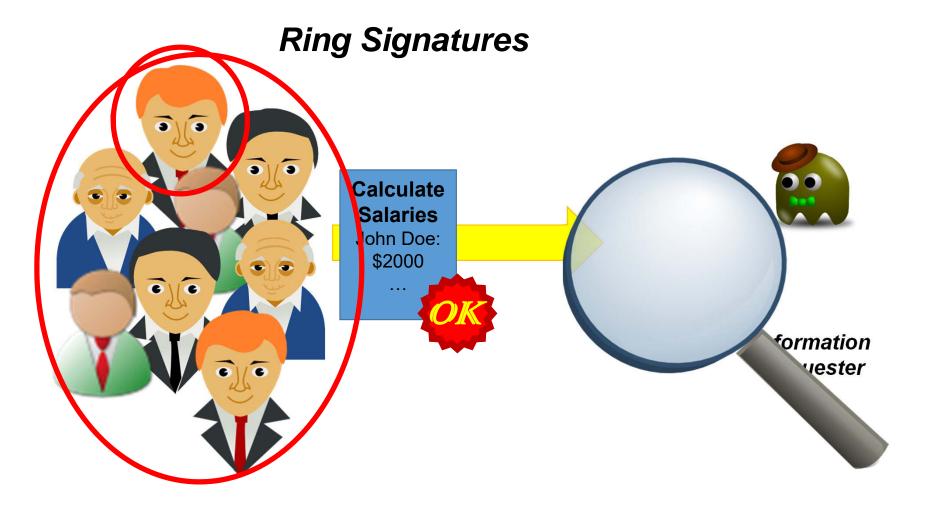
public



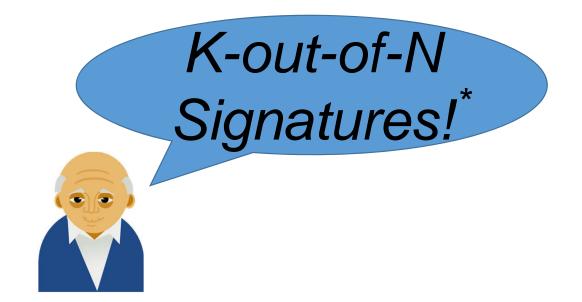
public


- A valid digital signature implies:
 - The corresponding piece of data...
 - (which must be known exactly from the message structure!)
 -was not modified...
 - (i.e. not a single character was added, deleted, exchanged)
 - ...since the signing entity (or signer)...
 - (e.g. the sender of a message, the contractor of a contract)
 - …had calculated the cryptographic signature value.

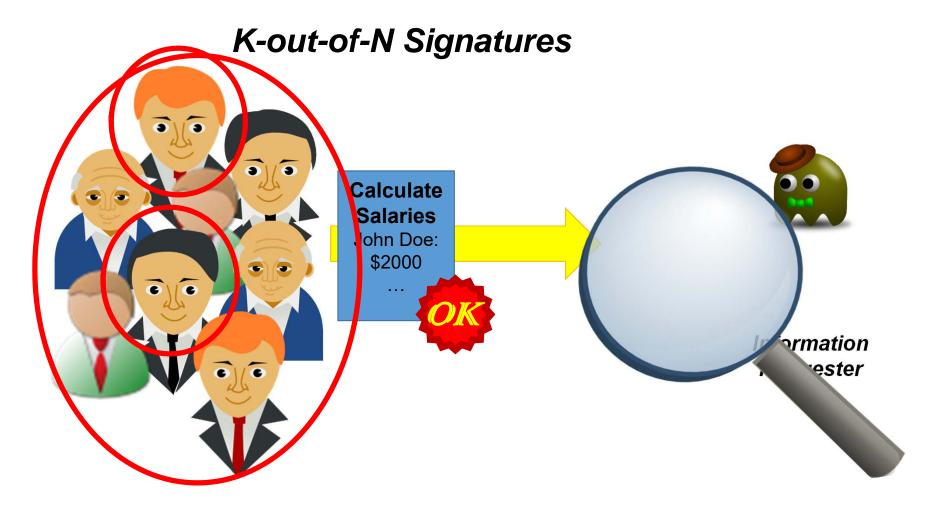
→ If signature *verification fails*, at least one of these statements must be wrong!



Techniques #5-#9: Advanced Digital Signatures

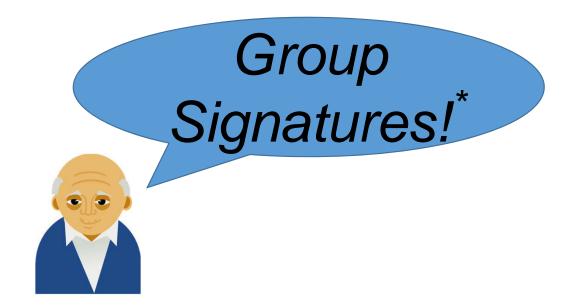


*[R. L. Rivest, A. Shamir, Y. Tauman: "How to leak a secret", ASIACRYPT 2001.]

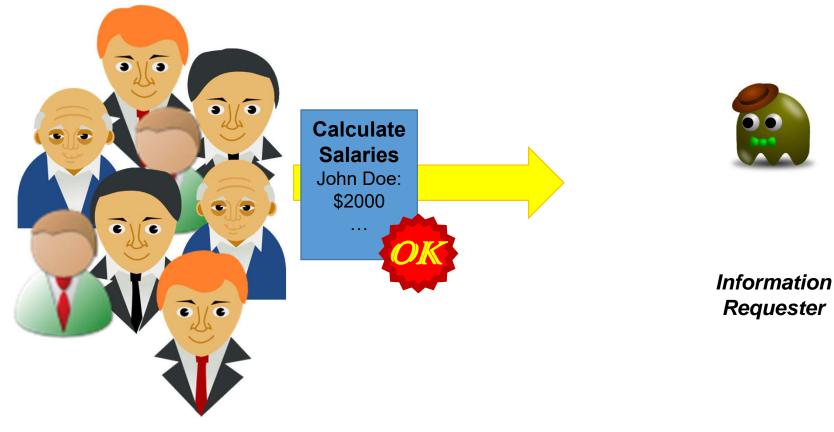


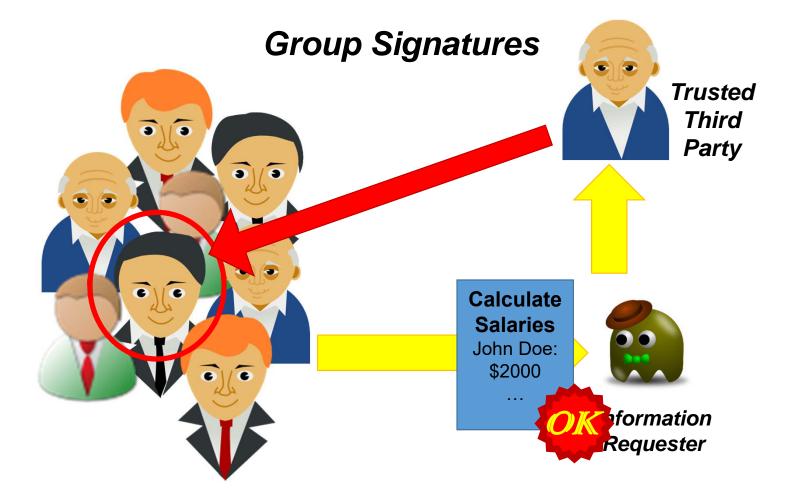
Ring Signatures

- Every group member can sign
- Everybody can verify
- Nobody can determine which group member did sign

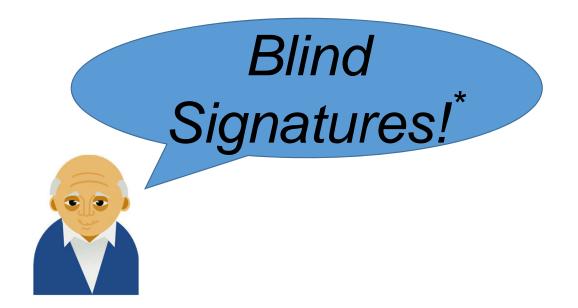


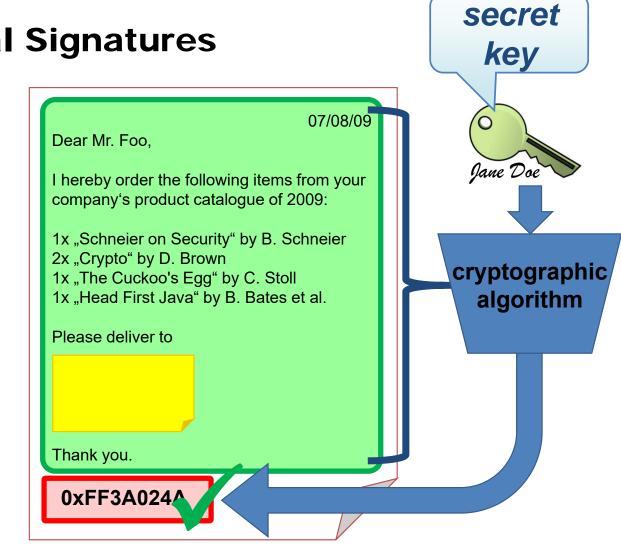
*[Boneh, D., Lynn, B., & Shacham, H.: Short signatures from the Weil pairing. ASIACRYPT 2001.]


K-out-of-N Signatures (or Threshold Signatures)


- No single group member can sign
- Every subgroup of at least K group members can sign (e.g. four-eyes principle)
- Everybody can verify
- Nobody can determine which group member(s) did sign

*[D. Chaum, E. van Heyst: "Group signatures", EUROCRYPT 1991]

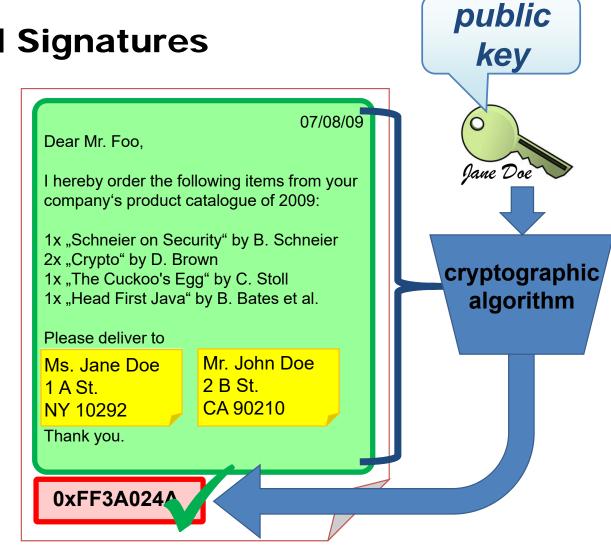

Group Signatures



Group Signatures

- Every group member can sign
- Everybody can verify
- Only a dedicated trusted third party can determine which group member did sign

*[Chaum, David: "Blind signatures for untraceable payments". Advances in Cryptology, 1983]

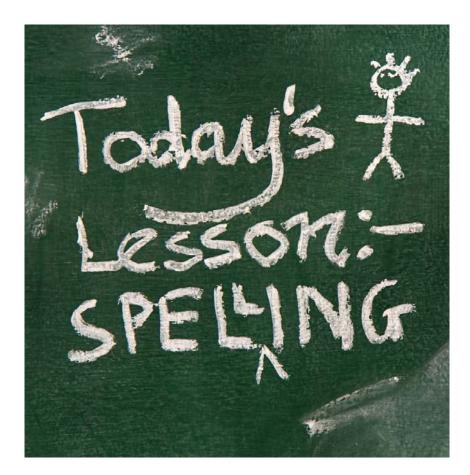


Blind Signatures

- Signer can sign the whole document
- Signer cannot see parts of the document
- Everybody can verify, as long as they know the whole document
- Applications e.g. in election systems, digital cash

*[Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. ESORICS 2005.]

Sanitizable Signatures


- Signer can sign two (or more) alternatives for part of document
- Signer explicitly names all allowed alternatives
- Subsequent processors can replace one alternative with another

→ Signature stays correct

- If other parts of the document are changed → Signature invalid
- Everybody can verify
- Applications in recognizable censorship

Summary

- Techniques for information reduction
 - Pseudonymization
 - K-Anonymity
 - Differential Privacy
- Techniques for information documentation
 - Digital Signatures
 - Advanced Digital Signatures
- Apply techniques whenever reasonable!
- Mind the hidden information!
- Mind the background knowledge!

Thank you!

Datenreduktion vor Herausgabe von Informationen - der Werkzeugkasten der Kryptographen

Prof. Dr.-Ing. Meiko Jensen

KAU.SE